J. Craig Venter Institute Inc.

10/19/2023 | Press release | Distributed by Public on 10/20/2023 10:17

Validating a Promoter Library for Application in Plasmid-Based Diatom Genetic Engineering

ACS synthetic biology. 2023-10-19;

Validating a Promoter Library for Application in Plasmid-Based Diatom Genetic Engineering

Garza EA, Bielinski VA, Espinoza JL, Orlandi K, Alfaro JR, Bolt TM, Beeri K, Weyman PD, Dupont CL

PMID: 37857380

Abstract

While diatoms are promising synthetic biology platforms, there currently exists a limited number of validated genetic regulatory parts available for genetic engineering. The standard method for diatom transformation, nonspecific introduction of DNA into chromosomes via biolistic particle bombardment, is low throughput and suffers from clonal variability and epigenetic effects. Recent developments in diatom engineering have demonstrated that autonomously replicating episomal plasmids serve as stable expression platforms for diverse gene expression technologies. These plasmids are delivered via bacterial conjugation and, when combined with modular DNA assembly technologies, provide a flexibility and speed not possible with biolistic-mediated strain generation. In order to expand the current toolbox for plasmid-based engineering in the diatom , a conjugation-based forward genetics screen for promoter discovery was developed, and application to a diatom genomic DNA library defined 252 promoter elements. From this library, 40 promoter/terminator pairs were delivered via conjugation on episomal plasmids, characterized in vivo, and ranked across 4 orders of magnitude difference in reporter gene expression levels.